Pharmacometric Modeling Strategies
Under construction
Alternatives in PKPD modelling
- Assume a PK model
- Estimate PK and PD parameters in a simultaneous fit (SIM)
- Estimate PK parameters first and then fit PD
- Condition on individual PK parameter estimates
- Assume no error in parameters (IPP = Individual PK Parameters)
- Account for error in parameters (IPPSE = Individual PK Parameters Standard Error)*
- Fix population PK parameters
- Include individual PK data (PPP&D = Population PK Parameters & Data)**
- Don’t include individual PK data (PPP = Population PK Parameters)
- Condition on individual PK parameter estimates
*LaCroix et al., JPKPD 39:177–193, 2012
**Wade and Karlsson, PAGE 1999
Abbreviations in Zhang et al 2003
Important considerations
Impact of a model
- What is the modeling used for? (e.g., bridging, dose, SmPC1 parameters?)
- Does the conclusion align with the aim?
- What data is available?
- Rich data
- Sparse data
- What is the structural model?
- Exposure-response is generally non-informative if only one dose-level is given, even if weight-adjusted
Reviewing models
- Does my conclusion align with the authors?
- Questions NGN (eNGiNe)
- Need-to-know: Will affect conclusion (Major objection)
- Good-to-know: Could affect conclusion (Other concern)
- Nice-to-know: Won’t affect conclusion (avoid asking this question)
References
- Musuamba et al., 2021, https://doi.org/10.1002/psp4.12669
- Skottheim Rusten & Musuamba, 2021, https://doi.org/10.1002/psp4.12708